Learned discretizations for passive scalar advection in a two-dimensional turbulent flow
نویسندگان
چکیده
Calculating the evolution of a passive scalar in turbulent flow requires resolving intricate stretching and folding field. Traditionally, this that computational mesh is much smaller than smallest scale concentration Here we demonstrate use machine learning to learn discretizations governing equation give accurate computations with coarser mesh. The model learns universal small structures field stretching, allowing it accurately interpolate less information.
منابع مشابه
Slow modes in passive scalar turbulent advection.
This communication describes the computation of slow modes in a generic shell model of passive turbulent advection. It is argued that the propagator for the correlation functions possesses a ladder of slow modes associated with each zero mode. These slow modes decay algebraically fast, as opposed to exponential. Using the explicit form of the propagator of the 2-point structure function, we sho...
متن کاملTurbulent Prandtl number effect on passive scalar advection
A generalization of Kraichnan’s model of passive scalar advection is considered. Physically motivated regularizations of the model are considered which take into account both the effects of viscosity and molecular diffusion. The balance between these two effects on the inertial range behavior for the scalar is shown to be parameterized by a new turbulent Prandtl number. Three different regimes ...
متن کاملA Simple Passive Scalar Advection-Diffusion Model
This paper presents a simple, one-dimensional model of a randomly advected passive scalar. The model exhibits anomalous inertial range scaling for the structure functions constructed from scalar differences. The model provides a simple computational test for recent ideas regarding closure and scaling for randomly advected passive scalars. Results suggest that high order structure function scali...
متن کاملBose-like condensation of Lagrangian particles and higher-order statistics in passive scalar turbulent advection
We establish an hitherto hidden connection between zero modes and instantons in the context of the Kraichnan model for passive scalar turbulent advection, that relies on the hypothesis that the production of strong gradients of the scalar is associated with Bose-like condensation of Lagrangian particles. It opens the way to the computation of scaling exponents of the N -th order structure funct...
متن کاملA Fast Explicit Operator Splitting Method for Passive Scalar Advection
The dispersal and mixing of scalar quantities such as concentrations or thermal energy are often modeled by advection-diffusion equations. Such problems arise in a wide variety of engineering, ecological and geophysical applications. In these situations a quantity such as chemical or pollutant concentration or temperature variation diffuses while being transported by the governing flow. In the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical review fluids
سال: 2021
ISSN: ['2469-9918', '2469-990X']
DOI: https://doi.org/10.1103/physrevfluids.6.064605